THEORETICAL ASSIGNMENT OF THE ELECTRONIC GROUND STATE OF THE FORMYLOXYL RADICAL

O. Kikuchi

Department of Chemistry, The University of Tsukuba Sakura-mura, Ibaraki 300-31, Japan

(Received in Japan 7 May 1977; received in UK for publication 27 May 1977)

" Σ or Π ?" is a recent point in dispute for the electronic ground state of acyloxyl radicals which are very important intermediates in thermal and photochemical decomposition of acyl peroxides. Both ESR-experimental^{1,2} and MOtheoretical²⁻⁴ investigations have been reported on the electronic structure of acyloxyl radicals. The observed g-tensors^{1,2} appear to support the Σ -ground state for the acyloxyl radical. Recent semi-empirical NDDO calculations⁴ also predict the Σ -ground state. On the other hand, the INDO calculations^{2,3} and ¹³C CIDNP² support the Π -type ground state, and the question has not been solved whether the electronic ground state of the acyloxyl radical is Σ - or Π -type. This paper intends to solve this problem by means of *ab initio* spin-restricted open-shell SCF calculations.

 C_{2v} and C_s are possible symmetries for the planar RCOO radical.

The lower electronic states expected for C_{2v} HCOO are ${}^{2}A_{1}(\Sigma)$, ${}^{2}B_{2}(\Sigma)$, and ${}^{2}A_{2}(\Pi)$, and those for C_{g} HCOO are ${}^{2}A''(\Sigma)$ and ${}^{2}A''(\Pi)$. The qualitative pictures of the unpaired-electron orbitals for these five states are shown in Fig. 1. In order to determine these five electronic states, *ab initio* calculations of HCOO were performed in a minimal basis set at the STO-3G level, the GTO expansion of STO

2421

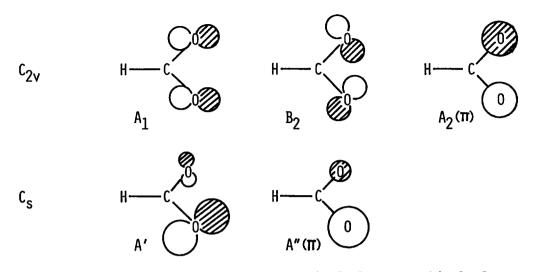


Fig. 1. Qualitative pictures of the unpaired-electron orbitals for the lower-lying five electronic states of HCOO.

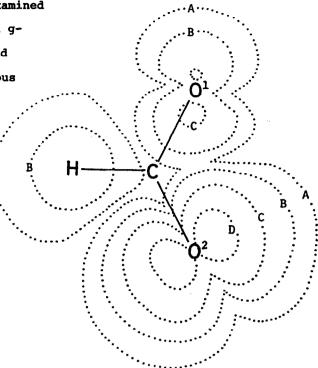
being chosen from the work of Stewart.⁵ The orbital exponents of STO employed are the standard molecular exponents given by Hehre et al.⁶ Bond lengths used are; C-H and C-O bond lengths of 1.08 and 1.25 Å for C_{2v} HCOO; two different C-O bond lengths of 1.23 and 1.27 Å for $C_{\rm s}$ HCOO. These values were estimated from the semi-empirical work on HCOO,⁴ which indicates that the total energy of HCOO is more sensitive to the OCO angle than the bond lengths. The OCO angle was thus varied from 100° to 130° in steps of 10° to obtain the lowest energy for each electronic state.

The self-consistency was achieved by repeated diagonalization of the correct general SCF operator given by Hirao and Nakatsuji.⁷ It is expected that the iterative diagonalization of the general SCF operator leads satisfactorily to the correct converged solutions even when the usual Roothaan open-shell treatment diverges.⁷ The total energies of four states, ${}^{2}A_{1}$, ${}^{2}B_{2}$, ${}^{2}A_{2}$, and ${}^{2}A$ ", were obtained satisfactorily by this procedure, while the convergence difficulty was found for the ${}^{2}A$ ' state even if the MO's were correctly selected in each iteration process. The conjugate gradient method⁸ was thus employed to obtain the MO's of the ${}^{2}A$ ' state, the gradient of the electronic energy with respect to each MO being evaluated by the orthogonality-constrained variation method.⁹

The lowest energies obtained for the five different electronic states are

listed in Table 1. When the HCOO radical is constrained to the C_{2v} symmetry, ${}^{2}A_{2}(\Pi)$ was the lowest state for the OCO angle of 100°~130°. It is, however, expected that the distorted ${}^{2}A'(\Sigma)$ state is much lower in energy than the Σ states of the C_{2v} symmetry reflecting the favourable mixing of Σ -configurations caused by anti-symmetric stretching of the OCO group. The calculated total energy of the ${}^{2}A'(\Sigma)$ state with OCO=120° was 15 kcal/mol lower than the C_{2v} ${}^{2}A_{2}(\Pi)$ state and 7 kcal/mol lower than the C_{s} ${}^{2}A"(\Pi)$ state. These results support the ${}^{2}A'(\Sigma)$ ground state for the HCOO radical.

Newton¹⁰ calculated the HCOO radical by *ab initio* STO-3G unrestricted SCF version and found that the C_{2v} I-state gave an energy lower than that of the distorted Σ -configuration. Dispite the unrestricted wavefunction includes the spin-polarization effect, it is not an eigen-function of the spin-squared operator, S^2 . According to the communication addressed to McBride from Newton, the spin-unrestricted eigen states of HCOO showed an unusually large admixture of states of higher multiplicity.¹⁰ The disagreement between the unrestricted and restricted calculations can not be elucidated here, because detailed results for the unrestricted calculations have not been published. The CI calculations or extended-basis calculations, however, were not performed in this paper.


The unpaired-electron of the ${}^{2}A'(\Sigma)$ state is more than 95% localized on the 2p AO of the O¹ atom (Fig. 2). This 2p AO is in a direction perpendicular to

States		oco ^{a)}	Total energy	
°2v	² Α ₁ (Σ)	130°	-185.48829	
	$^{2}B_{2}(\Sigma)$	110°	-185.51140	
	² A ₂ (II)	120°	-185.54552	
с _в	² Α'(Σ)	120°	-185.56996	
-	² A" (Ⅱ)	120°	-185.55832	

Table 1. Lowest energies (a.u.) of five electronic states of HCOO.

a) The OCO angle which gave the lowest energy for each state.

the $C-O^1$ bond. Recently, we¹¹ examined the direction of the experimental gtensor of benzoyloxyl radical, and calculated the g-tensors in various possible ground states. These two considerations supported the assignment of the ${}^{2}A'(\Sigma)$ ground state for the benzoyloxyl radical.¹¹ Since the feature of the unpairedelectron distribution of ${}^{2}A'(\Sigma)$ in Fig. 2 is completely selfconsistent with that analysis, it is concluded that the ground state of HCOO is the distorted $C_a^{2}A'(\Sigma)$ state.

The author wishes to thank Dr. S. Kato for his kind advices in programing.

Fig.2. Calculated unpaired-electron density map for the lowest ${}^{2}A'(\Sigma)$ state. Contour values are A=0.0001, B=0.001, C=0.01 and D=0.1 electrons.

References

- M. Iwasaki. B. Eda and K. Toriyama, J. Am. Chem. Soc., <u>92</u>, 3211(1970); H.C. Box, H.G.Freund, K.T.Lilga and E.E.Budzinski, J. Phys. Chem., <u>74</u>, 40(1970); K. Minakata and M. Iwasaki, J. Chem. Phys., <u>57</u>, 4758(1972); E.E. Budzinski and H.C. Box, ibid., <u>63</u>, 4927(1975).
- 2) N.J. Karch, E.T. Koh, B.L. Whitsel and J.M. McBride, J. Am. Chem. Soc., <u>97</u>, 6729(1975).
- 3) T. Koenig, R.A.Wielesek and J.G.Huntington, Tetrahedron Lett., 1974, 2283.
- 4) O. Kikuchi, K. Utsumi and K. Suzuki, Bull. Chem. Soc. Japan, 50, 1339(1977).
- 5) R.F. Stewart, J. Chem. Phys., <u>52</u>, 431(1970).
- 6) W.J. Hehre, R.Ditchfield, R.F.Stewart and J.A.Pople, ibid., 52, 2769(1970).
- 7) K. Hirao and H. Nakatsuji, ibid., <u>59</u>, 1457(1973).
- 8) R. Fletcher and C.M. Reeves, Computer J., 7, 149(1964).
- 9) T. Morikawa, Chem. Phys. Lett., <u>32</u>, 521(1975).
- 10) M.D. Newton, c.f. Ref. 37 cited in Ref. (2).
- 11) M.B. Yim, O. Kikuchi and D.E. Wood, to be published.